Linear Algebra, Winter 2022

List 9

Review for Celebration of Knowledge 2
215. Find the eigenvalues of the matrix $M=\left[\begin{array}{ccc}-7 & 30 & 30 \\ 5 & 6 & 10 \\ -5 & 10 & 6\end{array}\right]$.
216. Find three non-parallel eigenvectors for the matrix from Task 215.
217. Which of the following matrices are invertible?
(a) $\left[\begin{array}{ccc}-7 & 30 & 30 \\ 5 & 6 & 10 \\ -5 & 10 & 6\end{array}\right]$
(b) $\left[\begin{array}{cc}3 & -4 \\ -8 & 9\end{array}\right]$
(c) $\left[\begin{array}{cc}2 & -4 \\ -5 & 10\end{array}\right]$
218. Give an example of a matrix whose eigenvalues are 2 and 7 .
219. The eigenvalues of a 6×6 real matrix include

$$
2, \quad-4, \quad i, \quad 2+i .
$$

What is the determinant of this matrix?
220. For the complex numbers

$$
\begin{aligned}
z & =2 \sqrt{3} e^{(\pi / 3) i}=2 \sqrt{3} e^{60^{\circ} i}=\sqrt{3}+3 i \quad \text { and } \\
w & =2 e^{(\pi / 6) i}=2 e^{30^{\circ} i}=\sqrt{3}+i,
\end{aligned}
$$

compute $\frac{z}{w}$, giving your answer in rectangular or exponential form (your choice).
221. For the numbers z and w from Task 220 compute $z-w$, giving your answer in rectangular or exponential form (your choice).
222. For the number z and w from Task 220 compute $|\bar{z} \cdot w|$, giving your answer in rectangular or exponential form (your choice).
223. True or false?
(a) $|z+w|=|z|+|w|$
(g) $\overline{z+w}=\bar{z}+\bar{w}$
(b) $|z w|=|z|+|w|$
(h) $\overline{z w}=\bar{z}+\bar{w}$
(c) $|z w|=|z| \cdot|w|$
(i) $\overline{z w}=\bar{z} \cdot \bar{w}$
(d) $\arg (z+w)=\arg (z)+\arg (w)$
(j) $\sqrt{z+w}=\sqrt{z}+\sqrt{w}$
(e) $\arg (z w)=\arg (z)+\arg (w)$
(k) $\sqrt{z w}=\sqrt{z}+\sqrt{w}$
(f) $\arg (z w)=\arg (z) \cdot \arg (w)$
(e) $\sqrt{z w}=\sqrt{z} \cdot \sqrt{w}$
224. Convert the following numbers to exponential form, that is, \qquad $e^{(-i)}$ where both blanks are real numbers and the first blank is non-negative.
(a) $4 \cos \left(21^{\circ}\right)+4 \sin \left(21^{\circ}\right) i$
(c) $\sqrt{2} \cos (\pi / 4)+\sqrt{2} \sin (\pi / 4) i$
(b) $\cos (\pi / 4)+\sin (\pi / 4) i$
(d) $1+i$
(e) $4 i$
(f) $\overline{-5-5 i}$
(i) $\frac{1}{2}-\frac{\sqrt{3}}{2} i$
(ℓ) \sqrt{i}
(g) $\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(j) $\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{6}$
(m) $\sqrt{3}-3 i$
(h) $\overline{6 e^{5 \pi / 6}}$
(k) $1-\sqrt{3} i$
$\hat{i}(\mathrm{n}) \sin (i)$
225. The figure below shows a complex number w.

Calculate $\overline{w^{2}}$.
设226. The figure below shows three adjacent squares with line segments connecting some vertices. Use complex numbers to calculate the sum $\theta_{1}+\theta_{2}+\theta_{3}$ of the labeled angles.

$\sum 227$. The vertices of a regular octagon lie on a circle of radius 1 . What is the length of each side of the octagon?
228. One of the roots of

$$
z^{3}+2 z^{2}-38 z+80
$$

is $3-i$.
(a) Find all the complex roots of this polynomial.
(b) Write $z^{3}+2 z^{2}-38 z+80$ as a product of irreducible complex factors.
(c) Write $x^{3}+2 x^{2}-38 x+80$ as a product of irreducible real factors.
229. Find the real root(s) of $x^{8}+x^{6}$ and the multiplicity of each root.
230. Find the complex root(s) of $x^{8}+x^{6}$ and the multiplicity of each root.
231. Give the cubic polynomial

$$
f(x)=x^{3}+\ldots x^{2}+\ldots x+\ldots
$$

for which $f(9)=0$ and for which 13 is a zero with multiplicity 2 .
232. One of the roots of

$$
P(x)=2 x^{5}-5 x^{4}+10 x^{2}-10 x+3
$$

is 1 . What is its multiplicity?
233. The polynomial

$$
3 z^{6}-25 z^{5}+62 z^{4}-132 z^{3}+89 z^{2}-107 z+30
$$

has no repeated roots. How many linear complex polynomials are factors of this polynomial?
$\sum 234$. Find all roots of $3 z^{6}-25 z^{5}+62 z^{4}-132 z^{3}+89 z^{2}-107 z+30$.
235. Give the real polynomial of the form _ $x^{3}+\ldots x^{2}+\ldots x+\ldots$ whose graph is shown below.

236. Give the real polynomial of the form $x^{3}+$ \qquad $x^{2}+$ \qquad $x+$ \qquad whose roots include the two complex numbers shown below.

237. Two complex numbers are shown in the figure below:

(a) Write the number u in rectangular form.
(b) Write the number w in exponential form.
(c) Calculate the complex conjugates \bar{u} and \bar{w}.
(d) Give an example of a polynomial with real coefficients whose only zeros are u and w, or state that such a polynomial does not exist.
(e) Give an example of a polynomial with complex coefficients whose only zeros are u and w, or state that such a polynomial does not exist.
(f) Give an example of a degree-4 polynomial with real coefficients whose zeros include u and w (and possibly other points), or state that such a polynomial does not exist.

